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Decoherence as a probe of coherent quantum dynamics
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The effect of decoherence, induced by spontaneous emission, on the dynamics of cold atoms periodically
kicked by an optical lattice is experimentally and theoretically studied. Ideally, the mean energy growth is
essentially unaffected by weak decoherence, but the resonant momentum distributions are fundamentally
altered. It is shown that experiments are inevitably sensitive to certain nontrivial features of these distributions,
in a way that explains the puzzle of the observed enhancement of resonances by decoRbgendrev. Lett.

87, 074102(2001)]. This clarifies both the nature of the coherent evolution, and the way in which decoherence
disrupts it.
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The theory of coherent quantum transport in periodic podowest-order resonancef6,11]. When decoherence was
tentials is basic to solid state physics, and to our understanddded to the experiment by controlled spontaneous emission
ing of various conductance phenomena in crystal lattices(SE), the energy growth at resonance was found to be sig-
After succeeding in isolating and manipulating single quan-ificantly faster than could be accounted for by the heating
tum objects such as ions or atoms, quantum opticians, a&ffect of momentum transfer due to $6,12]. This looks
well as meso- and nanoscientists, have now started to builike incoherent magnification of a purely coherent, and non-
extended structures of atoms or ions of increasing complexclassical, phenomenon.
ity. A natural way of doing so is to arrange one, two, or three In this Brief Report we show how this counterintuitive
dimensional regular arrays dtold or ultracold atoms in  effect of decoherence can be resolved by inspection of the
optical latticeq 1], which then can be considered as faithful full atomic momentum distributions instead of merely their
realizations of strongly idealized, fundamental models ofmean squaréi.e., kinetic energyvalues, as were considered
solid state theory. Beyond illustrating such theoretical modin Ref. [6]. Decoherence then acts as expected: it destroys
els under clean and virtually perfectly controlled laboratorythe coherent dynamics underlying the quantum resonances
conditions, these experiments often also hold unexpectednd, in particular, certain nontrivial features of the momen-
surprisesdue to apparently innocent, real-life modifications tum distributions[7]. It is precisely this latter fact that pro-
of the original model and promise highly rewarding techni- duces the surprising enhancement of the mean energy values
cal applications in the future. Proposals that suggest usingbserved in the experimef®,7].
optical lattices for quantum information processir®] are Our experimental systeiid2] is a realization of the para-
but one example of this. digmatic kicked roto(KR) model[9,13], extensively used in

In all such respects, the impact of noise and decoherendgvestigations of classical chaotic dynamics and its quantum
is a crucial issu¢3—5], because decoherence is expected tecounterparf14]. After trapping and cooling in a magneto-
impair manifestly quantum phenomena. The present Briepptic trap, about 10cesium atoms are released and, falling
Report addresses a striking, seeming violation of this rulefreely under gravity, are exposed to pulses from a vertical
which was experimentally observed with kicked cold atomsstanding wave of off-resonant laser light. This is red-detuned
subjected to a pulsed, one-dimensional, spatially periodic oprom the &Sy,—62P,, (F=4—F’=3) D1 transition by
tical lattice [6]. Here, a peculiar type of coherent quantum 6. =2m7x30 GHz, and has a wavelength=894.7 nm. On
transport, called “quantum resonanck?,8] is theoretically release, the atomic temperature ig&, corresponding to a
predicted for kicking periods rationally related to the propa-Gaussian momentum distribution with full width at half
gation time of kicked atoms across the lattice constant. Thvaximum (FWHM) 124k, wherek =2#/\ . The dura-
mean kinetic energy of an atomic ensemble is then predictetion of each(squarg pulse ist,=500 ns, and the peak in-
to increase linearly with time, in sharp contrast to the behavtensity in the standing wave is:5x 10* mWi/cn?. Due to
ior predicted for nonresonant values of the kicking period,the ac Stark shift, these pulses resultsifunction-like ap-
where it saturate§n the process of “dynamical localization” plications of a sinusoidal potential, with spatial period?2.

[9], closely analogous to Anderson localization in one-Classically, the maximum impulse that this can impart is
dimensional disordered solidgl0]). In previous experi- #Gdgy, where¢d=02tp/85,_, and(} is the Rabi frequency
ments, enhanced transport was indeed observed for thd the atoms at the intensity maxima of the light field. Quan-
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tum mechanically, it imparts momentum to the atoms in in- 50 (a)

teger multiples ofi G, whereG= 2k, . Both the density dis- 40

tribution of the trapped atoms and the standing light wave 30

intensity profile are Gaussian, each with FWHM 1 mm, so 20

the mean value opy as experienced by the atomic ensemble & 10]

is =0.87. The standing wave passes through a voltage- g,

controlled crystal phase modulator which can shift the posi- é 504 ()

tion of the standing wave between consecutive pulses so that < 40

it effectively cancels the effect of gravity. Thus in the rest 30

frame of the atomic ensemble the standing wave appears to 20]

be stationary, yielding KR dynamics with kicking peridd 10]

(>tp), despite the presence of gravity. Decoherence can be 0 . . . . . .
introduced by inducing SE in the atoms through application o L O LR

of an additional 2us pulse of laser light after each of the ¢

kicking pulses. This light is 60 MHz red-detuned from the  FIG. 1. Experimental values of the mean energy of the atomic
6°S,,,—6%P3, (F=4—F"=5) D2 transition. The intensity ensemble after 30 kicks, asis varied from 0.1% to 6.3%r (i.e.,
of the pulse can be controlled so that the mean number of SE5 us<T=<210.5us) in (a) the absence, ang) the presence of
per atom per pulsing cycl@gg, can be varied continuously. induced spontaneous emission, withe=0.14.
Finally, after application of the pulses, the atoms fall through
a sheet of light resonant with tH22 transition, located 0.5 Figure 1a) shows an underlying smooth, periodic depen-
m below the point of release. This allows us to determinedence onr. This reflects ther dependence of the localization
their momentum distribution by a time-of-fligiiTOF) tech-  length of the dynamically localized atomic samplé]. The
nique, with a resolution of=%G. structure superimposed on the basic periodic variation has
In the absence of SE, the Hamiltonian that generates thearticularly narrow peaks at=2m,4m,6m. These are the
time evolution of the atomic wave function may be written in main quantum resonances, with=1r=1 and q=2r
the following dimensionless form =1,3. Higher-order §=3) resonances were not unambigu-
ously resolved within the given observation time. The
. p2 . present Brief Report is therefore focused on the main reso-
H)=7+ ¢dcos(x)m=2x 6(t—mr), (1) nances, and specifically at the surprising way in which they
react to decoherence, as shown in Fidp)1The mean energy
wherep is momentum in units ofG, x is position in units ~ growth at the resonances is clearly enhanced. In other words,
of G, andM is the mass of the atoms. The units of energyr€sonant transport, which is due to constructive quantum in-
and time are thei2G%/M and M/4G2, respectively. In terference, appears to be stabilized by decoheréwbde
such units the kicking period is=#G2T/M. This Hamil-  the dynamical localization away from resonance is barely
tonian is very close to that of the well-knowhkicked rotor, ~ affected, confirming that we are in the regime of weak deco-
with the sole(but important, as discussed belodifference ~ herencé3]). The apparent inconsistency of these experimen-
that our cold atoms are moving along a line rather than in 4&l observations with what seems theoretically reasonable is
circle. Notwithstanding this, the dynamics of the atoms ref€solved as follows. _ _ o
flect characteristic properties of the quantum K#ose cor- An atom periodically kicked in space and time is de-
responding classical phase space is mixed, consisting §cribed by a wave packef(x) composed of Z-periodic
regular and chaotic components, for nonvanishing kickingBloch statesjis(x), that is,
strength[15]). The nature of the quantum transport sensi- L
Fively depends on the.param(_eterllf r=_47-rr/q, with r,q (p(x):f dB expli BX) 5(X), )
integers, then the kicking period is rationally related to the 0
propagation time of kicked atoms across the lattice constant,
and quantum transport is typically enhanced by quantumwhereg is the quasimomentum. In our units, it is given by
resonanc¢8]. If 74 is sufficiently irrational, then transport the fractional part of the momentup=n+p (neZ). Itis
is inhibited by quantum interference, i.e., by dynamical lo-conserved in time, so the different Bloch states in E.

+

calization[9]. evolve independently of one another, and their momenta only
A conceptually simple way of experimentally testing this change by integers. Under the resonance condition
theoretical picture is to measure as a functiorrtfie mean =4mr/q, a special situation occurs for a specific, discrete

kinetic energy of the atoms, henceforth to be referred to asubclass of values @8. Besides being periodic in coordinate
“mean energy,” after a fixed interaction time dfkicks. The space, the one-period evolutigifloque} operator is then
result of such a measurementNst= 30 in the absence of SE also periodic in momentum space, with the integer pegod

is shown in Fig. 18), with 0.197<7<6.317. The mean This happens whef=m/2r, 0=m<2r, minteger. The am-
energies were extracted from a finite momentum windowplitudes of such waves at momentum states separated by
(—60<p=<60), and low-amplitude noise in the time-of- qAG (in physical unit$ exactly rephase after each kif&];

flight signal was eliminated by imposing a signal thresholdhere we specialize tq=1,2. This rephasing is analogous to
estimated from the background noise level at high momentahe Talbot effect in optics, so we speak of these resonances
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as occurring at rational multiples of the half-Talbot time 10" (@)
T1o=27M/hG2=66.7 us (for which 7=21). In much the
same way as spatial periodicity enforces ballistic motion in
physical space, the momentum periodicity which holds for
special values of3 (i.e., B=1/2 for q=2, and3=0,1/2 for
g=1) enforces ballistic propagation of the corresponding
statesn momentum spacé¢hus their energy grows quadrati-
cally in time. The remaining Bloch components of the origi-
nal wave packet, witl8 not in the “resonant” class, undergo

. , ifS
R T, MM

Normalized population

a quasiperiodic energy exchange with the driving field, lead- 10°} RN
ing to a finite spread of the associatg@-dependentmo- . n 'Jf' l"'\m WY
mentum distribution for all times. Upon incoherently averag- 101;0 ’n_“")" I A e e R

ing over the continuous set of quasimomenta which
constitute the atomic ensemble, there is competition between
quasiperiodic and ballistic propagation, andNisncreases FIG. 2. Normalized experimentésolid line) and coarse-grained
the values ofs that populate the ballistic growth must match numerical(dotted lin@ momentum distributions afte¥ =30 kicks
more closely the ideal resonant values. On the one hand, tha the quantum resonanee=27 (T=66.5us) in (a) the absence,
leads tolinear growth of the total mean energi~ ¢§|\|/4_ and(t&the presence of induceE spontaneous emission. Experimen-
On the other hand, atationary momentum distribution t@lly, Nsg=(0.14+0.04), whilensg=0.1 numerically. The dashed
Py(n)=limy_...P(n,N) [7], given by curve in(a) is the asymptotic distributioP¢(n), as given in Eq.
(3). The arrow labels irfa) indicate the ballistic wings, whose mo-
= d¢ (27da mentum varies linearly witiN. Note the slight asymmetry in the
Py(n)= 2 h(n’)f z—f 2—Jn7n,(f(§,a)), ©)] experimental distributions arount=0, due to nonideal aspects of
n' —weTmJo em the realization. The fainter dotted lines show the signal threshold
and momentum cuts imposed on the experimental data when calcu-
lating mean energies.

Coarse-grained atomic momentum #

emerges, wherd®(n,N) is the coarse-grained momentum
distribution of the ensemble aftéf kicks. The coarse grain-
ing is on the scale of unity#G in physical unity so as in terms of population, this experimental loss from the bal-
to yield a distribution inn, which is consistent with the listic wings leads to a mean energy which is significantly less
finite-size binning of the experimentally detected momen-than the theoretical value. Our theoretical picture is com-
tum distribution. In Eq.(3), h(n’) is the initial (assumed pared with experimental data in Fig(a?, where experimen-
smooth momentum distributionf(¢,a) = ¢g4sin()csc(a), tal and numerical momentum distributions are shown at the
&=m(2B—1), andJ,,_, is a Bessel function of first kind and quantum resonance=2x (T=66.5 us), afterN=30 kicks.
ordern—n’. The asymptotic distributioiP¢(n), shown in  Note that our numerical simulation exhibits the ballistic
Fig. 2(a), is attained because the phaaesf the nonresonant wings of the distribution, which are swamped by the noise
Bloch components of the original wave packet, accumulatetbackground in the experimental data. When processing such
under the action of the time evolution operator, are effec-data, only momenta in the window- 60,60 were taken into
tively averaged. account. Furthermore, the experimental distribution exhibits
For finite times, P(n,N) exhibits a narrow, stationary an asymmetry arounach=0 which is not present in the
peak centered arouni=0, algebraic decay:n™? over in-  theory. This is due to two effects: the first, and most impor-
termediate momenta, and “ballistic wings” due to the tant, is that of the lock-in amplifier and its associated low
almost-resonanB values, which move to higher momenta pass filter, used in the TOF measurement, which slightly dis-
linearly in time. It is important to note that the central peak istort the momentum distribution. The second is that the re-
narrower than the exponential distribution observed in dy- moval of gravity’s effect by the crystal phase modulator is
namically localized atomic ensembles, and that the lineaimperfect; gravity breaks the symmetry of the system’s evo-
energy growth is observed at all times, in spite of the onselution and hence of the momentum distribution. Neverthe-
of the stationary distribution. There is no inconsistency hereless, the experimental and theoretical results agree very well
the asymptotic limit to which the distribution tends has anin the central part of the distribution. Other deviations of the
n~2 fall-off at largen, and hence has an infinite mean energyexperimental system from the ideal af@: pulses are not
(i.e., a divergent second momgrnThe ballistic wings, also  &like as they have a finite duratidp, (ii) random ampli-
experimentally observed in Rdfl1], dominate the theoreti- tude noise is introduced by laser power fluctuati¢ng%),
cally computed mean energy growth. As the wings are fed bynd (iii) different atoms are subject to somewhat different
the resonanp subclass, the resonant energy growth is ulti-values of¢y [12].
mately due to conservation of the quasimomenignm the The addition of noise reshuffles the quasimomenta of the
kicking process. initial distribution, at a rate proportional fogg, and thus
Experimental detection of these wings in the final atomicdestroys the conservation of quasimomentum. This reshuf-
momentum distribution is extremely difficult, for several rea-fling prevents atoms from remaining in the fast-traveling
sons. The most important of these for our present discussiofuasimomentum range for a long time; the formation of bal-
is that the wings must not have moved beyond the cutoffdistic wings is thus inhibited. On the other hand, reshuffling
imposed by the signal-to-noise ratio. Though relatively smallgivesall atoms a chance of sojourning a while in those qua-
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simomentum ranges and hence experiencing a transient balase, the growth of the experimentally measured energy is
listic momentum growth. As a result, the distribution at mod-strongly depressed as soon as the ballistic wings escape the
erate momenta broadens in time, at the expense of thgetection windows. In the presence of noise, the energy
ballistic wings. This is seen in Fig.(8: for nse=0.14, the  growth is not due to théallistic wings, but rather taliffu-
momentum distribution is strongly broadened as it exhibitssive broadening of the whole distribution, and is therefore
enhanced population of moderate momentum states. dominated by the center. Hence the effect of finite experi-
The incoherent dynamics are amenable to analytical treainental detection windows is much less severe and the mea-
ment 7], which shows that the distribution no longer ap- gyred mean energy remains closer to its ideal value up to a

proaches a stationary form. Instead, it evolves towards a COMigher value ofN. This leads to an apparent enhancement of

tinually broadening, diffusionlike Gaussian. The theoreticallyy,o rasonance peaks compared to the SE-free case. Such

obta![niad line shaﬁe compgre(swvel\rly tfa¥ﬁr?bly tohthe_eXpe”ﬁoise—induced signal enhancement is reminiscent of “sto-
T%nla} ort1r<]e, as SI own in dlg ¢ : r?.e a Wet_c OlsffiStE th chastic resonance,” where the response of a system to some
—0.1lorthe analysis In order to achieve an optimal fit 1o einput signal is enhanced by stochastic activafibd]. How-

experimental data. The uncertainty in the intensitylxd ever, the hallmark of stochastic resonance is a maximum
light experienced by the atoms, due to loss at the glass fac S

% gnal enhancement at an optimal, nonvanishing noise level.
of the vacuum system and the exact shape of the Pulse,  rpis hag ot so far been established in our present scenario.
means that the experimental value g is (0.14+0.04),

istent with this best th tical fit In summary, we have shown that the linear growth with
consistent wi IS best theoretical Tit . time of the mean energy at quantum resonance, inhibited in
Analytically, the mean energy grows according o

" il . o ~experiments by finite detection windows on finite time
=(D/2+ ¢g/4)N, whereD=nsg/12 is the diffusion coeffi-  gqa1e5 is restored there by adding noise. This effect is ulti-

cient associated with the momentum transfer due tdBE  mately rooted in the difference between atoms and rotors and
Since D is rather small(=0.01 for the cases considered js 5 siriking, albeit indirect, demonstration of the peculiar

here, the mean energy growth is almost the same as in theyyyre of coherent resonant transport for kicked atoms, and
resonant caswithout decoherence, where the same expresy oy it is modified by photon recoil-induced decoherence.
sion forE is obtained, excedd =0 (see above Hence weak

decoherence destroys the conservation of quasimomentum, We thank S.A. Gardiner and K. Burnett for stimulating
which lies at the very root of resonances, yet in the ideabnd enlightening discussions. We acknowledge support from
model it only affects the resonant energy growth mildly.the U.K. EPSRC, The Royal Society, the EU TMR “Cold
However, the theoretically almost identical energy growth isQuantum Gases” network and QTRANS RTN1-1999-08400,
produced by quite different physical mechanisms, which rethe INFM-PA projectWeak Chaos: Theory and Applicatigns
act to the cutoffs inherent in experimental detection schemethe U.S.-Israel Binational Science Foundati&$F), and the

in dramatically different ways. In the coherently evolved Minerva Center of Nonlinear Physics of Complex Systems.
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